If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=59
We move all terms to the left:
y^2-(59)=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| 33=35-6(3-1w) | | 3b+1/3=2b | | -9n-2=-9n | | 5x−4+2x−1=180 | | 5y-4y=14 | | –48=6(v+2) | | 19-18=x/4 | | 4x+3(2x+1)=4x+ | | 8=8m+13-3m | | (15c+10)=12c–9 | | 5q+8=5q | | Z+5-2z=-14 | | -5(x-3)=-5x+4 | | 6x+5+2x-8=21 | | 3(2x+4)=2(4x+6)-2x | | x=-4x+10 | | -6h=-7-5h | | a-1+5a=23 | | -3c-2=-4c-10 | | -11(x+4)+295=10+21 | | 17y=16y+19 | | 2y+29-8y=5 | | (1/2)x-15=7 | | 0.7w=60 | | 3x-4=8x-29 | | 7.2y=57.6 | | 11+4x=-8x+25 | | -4-6-2=-2(3x-1) | | -18+3x=2x | | 3n-14=24 | | 10+y=14 | | 2g-6=-39 |